Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.320
Filtrar
1.
J Bone Miner Res ; 39(1): 59-72, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38630879

RESUMO

Identification of promising seed cells plays a pivotal role in achieving tissue regeneration. This study demonstrated that LepR-expressing cells (LepR+ cells) are required for maintaining periodontal homeostasis at the adult stage. We further investigated how LepR+ cells behave in periodontal healing using a ligature-induced periodontitis (PD) and a self-healing murine model with LepRCre/+; R26RtdTomato/+ mice. Lineage tracing experiments revealed that the largely suppressed osteogenic ability of LepR+ cells results from periodontal inflammation. Periodontal defects were partially recovered when the ligature was removed, in which the osteogenic differentiation of LepR+ cell lineage was promoted and contributed to the newly formed alveolar bone. A cell ablation model established with LepRCre/+; R26RtdTomato/+; R26RDTA/+ mice further proved that LepR+ cells are an important cell source of newly formed alveolar bone. Expressions of ß-catenin and LEF1 in LepR+ cells were upregulated when the inflammatory stimuli were removed, which are consistent with the functional changes observed during periodontal healing. Furthermore, the conditional upregulation of WNT signaling or the application of sclerostin neutralized antibody promoted the osteogenic function of LepR+ cells. In contrast, the specific knockdown of ß-catenin in LepR+ human periodontal ligament cells with small interfering RNA caused arrested osteogenic function. Our findings identified the LepR+ cell lineage as a critical cell population for endogenous periodontal healing post PD, which is regulated by the WNT signaling pathway, making it a promising seed cell population in periodontal tissue regeneration.


Assuntos
Osteogênese , Periodontite , Adulto , Camundongos , Humanos , Animais , beta Catenina/metabolismo , Ligamento Periodontal/metabolismo , Inflamação , Via de Sinalização Wnt/fisiologia , Diferenciação Celular , Células Cultivadas
2.
Cells ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474329

RESUMO

Wnt signaling is a highly conserved metazoan pathway that plays a crucial role in cell fate determination and morphogenesis during development. Wnt ligands can induce disparate cellular responses. The exact mechanism behind these different outcomes is not fully understood but may be due to interactions with different receptors on the cell membrane. PTK7/Otk is a transmembrane receptor that is implicated in various developmental and physiological processes including cell polarity, cell migration, and invasion. Here, we examine two roles of Otk-1 and Otk-2 in patterning and neurogenesis. We find that Otk-1 is a positive regulator of signaling and Otk-2 functions as its inhibitor. We propose that PTK7/Otk functions in signaling, cell migration, and polarity contributing to the diversity of cellular responses seen in Wnt-mediated processes.


Assuntos
Padronização Corporal , Neurogênese , Receptores Proteína Tirosina Quinases , Via de Sinalização Wnt , Animais , Diferenciação Celular , Membrana Celular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Via de Sinalização Wnt/fisiologia
3.
J Bone Miner Res ; 39(3): 326-340, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477820

RESUMO

Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/ß-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/ß-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.


Assuntos
Autoantígenos , Doenças Ósseas , Células-Tronco Mesenquimais , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Osteogênese , beta Catenina/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt/fisiologia , Doenças Ósseas/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas , Camundongos Knockout , Lipídeos
4.
Biochem Biophys Res Commun ; 704: 149723, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430698

RESUMO

Subclinical hyperthyroidism is defined biochemically as a low or undetectable thyroid-stimulating hormone (TSH) with normal thyroid hormone levels. Low TSHR signaling is considered to associate with cognitive impairment. However, the underlying molecular mechanism by which TSHR signaling modulates memory is poorly understood. In this study, we found that Tshr-deficient in the hippocampal neurons impairs the learning and memory abilities of mice, accompanying by a decline in the number of newborn neurons. Notably, Tshr ablation in the hippocampus decreases the expression of Wnt5a, thereby inactivating the ß-catenin signaling pathway to reduce the neurogenesis. Conversely, activating of the Wnt/ß-catenin pathway by the agonist SKL2001 results in an increase in hippocampal neurogenesis, resulting in the amelioration in the deficits of memory caused by Tshr deletion. Understanding how TSHR signaling in the hippocampus regulates memory provides insights into subclinical hyperthyroidism affecting cognitive function and will suggest ways to rationally design interventions for neurocognitive disorders.


Assuntos
Hipertireoidismo , beta Catenina , Camundongos , Animais , beta Catenina/metabolismo , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Via de Sinalização Wnt/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , Hipertireoidismo/metabolismo
5.
FASEB J ; 38(4): e23463, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334393

RESUMO

With self-renewal and pluripotency features, embryonic stem cells (ESCs) provide an invaluable tool to investigate early cell fate decisions. Pluripotency exit and lineage commitment depend on precise regulation of gene expression that requires coordination between transcription (TF) and chromatin factors in response to various signaling pathways. SET domain-containing 3 (SETD3) is a methyltransferase that can modify histones in the nucleus and actin in the cytoplasm. Through an shRNA screen, we previously identified SETD3 as an important factor in the meso/endodermal lineage commitment of mouse ESCs (mESC). In this study, we identified SETD3-dependent transcriptomic changes during endoderm differentiation of mESCs using time-course RNA-seq analysis. We found that SETD3 is involved in the timely activation of the endoderm-related gene network. The canonical Wnt signaling pathway was one of the markedly altered signaling pathways in the absence of SETD3. The assessment of Wnt transcriptional activity revealed a significant reduction in Setd3-deleted (setd3∆) mESCs coincident with a decrease in the nuclear pool of the key TF ß-catenin level, though no change was observed in its mRNA or total protein level. Furthermore, a proximity ligation assay (PLA) found an interaction between SETD3 and ß-catenin. We were able to rescue the differentiation defect by stably re-expressing SETD3 or activating the canonical Wnt signaling pathway by changing mESC culture conditions. Our results suggest that alterations in the canonical Wnt pathway activity and subcellular localization of ß-catenin might contribute to the endoderm differentiation defect of setd3∆ mESCs.


Assuntos
Células-Tronco Embrionárias Murinas , beta Catenina , Animais , Camundongos , beta Catenina/metabolismo , Diferenciação Celular/genética , Endoderma , Via de Sinalização Wnt/fisiologia
6.
Eur J Pharmacol ; 966: 176375, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38307381

RESUMO

The role of the Wnt/ß-catenin signaling pathway in epilepsy and the effects of its modulators as efficacious treatment options, though postulated, has not been sufficiently investigated. We evaluated the involvement of ß-catenin and GSK-3ß, the significant proteins in this pathway, in the lithium chloride-pilocarpine-induced status epilepticus model in rodents to study acute phase of temporal lobe epilepsy (TLE). The modulators studied were 6-BIO, a GSK-3ß inhibitor and Sulindac, a Dvl protein inhibitor. The disease group exhibited increased seizure score and seizure frequency, and the assessment of neurobehavioral parameters indicated notable alterations. Furthermore, histopathological examination of hippocampal brain tissues revealed significant neurodegeneration. Immunohistochemical study of hippocampus revealed neurogenesis in 6-BIO and sulindac groups. The gene and protein expression by RT-qPCR and western blotting studies indicated Wnt/ß-catenin pathway downregulation and increased apoptosis in the acute phase of TLE. 6-BIO was very efficient in upregulating the Wnt pathway, decreasing neuronal damage, increasing neurogenesis in hippocampus and decreasing seizure score and frequency in comparison to sulindac. This suggests that both GSK-3ß and ß-catenin are potential and novel drug targets for acute phase of TLE, and treatment options targeting these proteins could be beneficial in successfully managing acute epilepsy. Further evaluation of 6-BIO to explore its therapeutic potential in other models of epilepsy should be conducted.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Ratos , Animais , Pilocarpina , Via de Sinalização Wnt/fisiologia , Lítio/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Sulindaco/efeitos adversos , Sulindaco/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico
7.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 194-199, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372093

RESUMO

The goals of this study were to investigate whether Wnt/ß-catenin signaling plays a role in hypo-osmolality-related degeneration of nucleus pulposus (NP) cells, and if so, to define the mechanism underlying AQP1 in this effect. Human NP cells were cultured under hypo-osmotic (300/350/400 mOsm) and iso-osmotic (450 mOsm) conditions. The cell viability, AQP1, the expression of Wnt/ß-catenin signaling, collagen II/I, and MMP3/9 were evaluated. To determine the effects of the Wnt/ß-catenin signaling, we used the inhibitor and the activator of Wnt during the hypo-osmotic culture of NP cells. We also examined whether the silencing and overexpressing of the AQP1 gene would affect the Wnt/ß-catenin expression in NP cells. Hypo-osmolality caused NP cell degeneration and activated the Wnt/ß-catenin signaling but suppressed the AQP1 level. Inhibiting the Wnt/ß-catenin signaling alleviated the hypo-osmolality-induced NP cell degeneration. On the contrary, activating Wnt/ß-catenin aggravated the NP cell degeneration under hypo-osmotic conditions, which did not affect AQP1 expression. AQP1-overexpressed NP cells exhibited decreased Wnt/ß-catenin signaling and alleviated cell degeneration under the hypo-osmotic condition. Besides, AQP1 silencing accelerated NP cell degeneration and activated Wnt/ß-catenin expression compared with untreated control. Hypo-osmolality promotes NP cell degeneration via activating Wnt/ß-catenin signaling, which is suppressed by AQP1 expression. The upregulation of AQP1 suppressed the Wnt/ß-catenin signaling and alleviated the hypo-osmolality induced by the NP cell degeneration.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Células Cultivadas , Via de Sinalização Wnt/fisiologia , Aquaporina 1/genética , Aquaporina 1/metabolismo
8.
FASEB J ; 38(4): e23479, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38345813

RESUMO

Accumulating evidence shows that renal fibrosis plays a key role in the development of hypertensive nephropathy (HTN). Therefore, a better understanding of the underlying mechanism of renal fibrosis regulation in HTN would be critical for designing rational strategies for therapeutic interventions. In this study, we revealed that GPR97, a novel identified adhesion G coupled receptor, plays an important role in the regulation of Wnt/ß-catenin signaling, which is the crucial driver of renal fibrosis in HTN. First, we identified that the expression of GPR97 correlated with the ß-catenin expression in renal biopsy from patients with HTN. Moreover, we found that GPR97 deficiency inhibited Wnt/ß-catenin signaling in mice with HTN, as evidenced by the reduction of ß-catenin expression and downstream target proteins, including MMP7 and Fibronectin. Mechanistically, we found that GPR97 could directly bind with Wnt1 in cultured tubular cells and TGF-ß1 treatment enhanced the binding ability of GPR97 and Wnt1. In addition, the gene silencing of GPR97 could decrease the Wnt1-induced fibrotic phenotype of tubular cells and inflammatory responses, suggesting that the binding of GPR97 and Wnt1 promoted Wnt/ß-catenin signaling. Collectively, our studies reveal that GPR97 is a regulator of Wnt/ß-catenin signaling in HTN, and targeting GPR97 may be a novel therapeutic strategy for HTN treatment.


Assuntos
Hipertensão Renal , Nefrite , Receptores Acoplados a Proteínas G , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Fibrose , Via de Sinalização Wnt/fisiologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética
9.
Exp Cell Res ; 435(2): 113935, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237848

RESUMO

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is a common malignancy with a poor prognosis. This study aimed to determine the influence and underlying mechanisms of CLSPN on OSCC. METHODS: CLSPN expression was tested using quantitative real-time polymerase chain reaction, immunohistochemistry, and western blotting. Flow cytometry, cell counting kit, and colony formation assays were performed to determine OSCC cell apoptosis, viability, and proliferation, respectively. In OSCC cells, the extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose uptake, and lactate production were determined using the corresponding kits. Changes in the protein levels of HK2, PKM2, LDHA, Wnt3a, and ß-catenin were assessed using western blotting. RESULTS: CLSPN expression was increased in OSCC tissues. Overexpression of CLSPN in HSC-2 cells promoted cell proliferation, increased the levels of ECAR, glucose uptake, and lactate production, and increased the protein levels of HK2, PKM2, LDHA, Wnt3a, and ß-catenin, but inhibited OCR levels and apoptosis. The knockdown of CLSPN in CAL27 cells resulted in the opposite results. Moreover, the effects of CLSPN overexpression on glycolysis and OSCC cell proliferation were reversed by Wnt3a knockdown. In vivo, knockdown of CLSPN restrained tumor growth, glycolysis, and the activation of Wnt/ß-catenin signaling. CONCLUSION: CLSPN promoted glycolysis and OSCC cell proliferation, and reduced apoptosis, which was achieved by the activation of Wnt/ß-catenin signaling pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Via de Sinalização Wnt/fisiologia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Glicólise , Movimento Celular , Lactatos , Glucose , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
10.
Biomed Pharmacother ; 171: 116182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262146

RESUMO

Endometriosis is a disease characterized by the ectopic growth of endometrial tissue (glands and stroma) outside the confines of the uterus and often involves vital organs such as the intestines and urinary system. Endometriosis is considered a refractory disease owing to its enigmatic etiology, propensity for recurrence following conservative or surgical interventions, and the absence of radical treatment and long-term management. In recent years, the incidence of endometriosis has gradually increased, rendering it a pressing concern among women of childbearing age. A more profound understanding of its pathogenesis can significantly improve prognosis. Recent research endeavors have spotlighted the molecular mechanisms by which microRNAs (miRNAs) regulate the occurrence and progression of endometriosis. Many miRNAs have been reported to be aberrantly expressed in the affected tissues of both patients and animal models. These miRNAs actively participate in the regulation of inflammatory reactions, cellular proliferation, angiogenesis, and tissue remodeling. Their capacity to modulate crucial signaling pathways, such as the Wnt/ß-catenin signaling pathway, reinforces their potential utility as diagnostic markers or therapeutic agents for endometriosis. In this review, we provide the latest insights into the role of miRNAs that interact with the Wnt/ß-catenin pathway to regulate the biological behaviors of endometriosis cells and disease-related symptoms, such as pain and infertility. We hope that this review will provide novel insights and promising targets for innovative therapies addressing endometriosis.


Assuntos
Endometriose , MicroRNAs , Animais , Humanos , Feminino , Endometriose/patologia , Via de Sinalização Wnt/fisiologia , Proliferação de Células , Modelos Animais de Doenças , beta Catenina/metabolismo
11.
Exp Mol Med ; 56(1): 156-167, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172596

RESUMO

Osteoarthritis (OA) is the most common form of arthritis. However, the exact pathogenesis remains unclear. Emerging evidence shows that N6-methyladenosine (m6A) modification may have an important role in OA pathogenesis. This study aimed to investigate the role of m6A writers and the underlying mechanisms in osteoarthritic cartilage. Among m6A methyltransferases, Wilms tumor 1-associated protein (WTAP) expression most significantly differed in clinical osteoarthritic cartilage. WTAP regulated extracellular matrix (ECM) degradation, inflammation and antioxidation in human chondrocytes. Mechanistically, the m6A modification and relative downstream targets in osteoarthritic cartilage were assessed by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing, which indicated that the expression of frizzled-related protein (FRZB), a secreted Wnt antagonist, was abnormally decreased and accompanied by high m6A modification in osteoarthritic cartilage. In vitro dysregulated WTAP had positive effects on ß-catenin expression by targeting FRZB, which finally contributed to the cartilage injury phenotype in chondrocytes. Intra-articular injection of adeno-associated virus-WTAP alleviated OA progression in a mouse model, while this protective effect could be reversed by the application of a Wnt/ß-catenin activator. In summary, this study revealed that WTAP-dependent RNA m6A modification contributed to Wnt/ß-catenin pathway activation and OA progression through post-transcriptional regulation of FRZB mRNA, thus providing a potentially effective therapeutic strategy for OA treatment.


Assuntos
Osteoartrite , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Cartilagem/metabolismo , Proteínas de Ciclo Celular/metabolismo , Condrócitos/metabolismo , Osteoartrite/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Via de Sinalização Wnt/fisiologia
12.
J Neuroinflammation ; 21(1): 10, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178152

RESUMO

Myasthenia gravis is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. However, some patients also experience autonomic dysfunction, anxiety, depression, and other neurological symptoms, suggesting the complex nature of the neurological manifestations. With the aim of explaining the symptoms related to the central nervous system, we utilized a rat model to investigate the impact of dopamine signaling in the central nervous and peripheral circulation. We adopted several screening methods, including western blot, quantitative PCR, mass spectrum technique, immunohistochemistry, immunofluorescence staining, and flow cytometry. In this study, we observed increased and activated dopamine signaling in both the central nervous system and peripheral circulation of myasthenia gravis rats. Furthermore, changes in the expression of two key molecules, Claudin5 and CD31, in endothelial cells of the blood-brain barrier were also examined in these rats. We also confirmed that dopamine incubation reduced the expression of ZO1, Claudin5, and CD31 in endothelial cells by inhibiting the Wnt/ß-catenin signaling pathway. Overall, this study provides novel evidence suggesting that pathologically elevated dopamine in both the central nervous and peripheral circulation of myasthenia gravis rats impair brain-blood barrier integrity by inhibiting junction protein expression in brain microvascular endothelial cells through the Wnt/ß-catenin pathway.


Assuntos
Dopamina , Miastenia Gravis , Humanos , Ratos , Animais , Dopamina/metabolismo , Células Endoteliais/metabolismo , Encéfalo , Barreira Hematoencefálica/metabolismo , Via de Sinalização Wnt/fisiologia , Miastenia Gravis/metabolismo
13.
Biochem Biophys Res Commun ; 695: 149421, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38171233

RESUMO

In mammalian brain development, WNT signaling balances proliferation and differentiation of neural progenitor cells, and is essential for the maintenance of regular brain development. JADE1 is a candidate transcription co-factor essential for DNA replication, cell division, and cell cycle regulation. In 293T cells, JADE1 is stabilized by von Hippel-Lindau protein pVHL, promotes the ß-catenin ubiquitination and thus blunts canonical WNT signaling. Furthermore, JADE1 inhibits ß-catenin-induced ectopic axis formation in Xenopus embryos. However, JADE1's role in mammalian brain development remains unknown. Here, we generated a new Jade1 knockout mouse line using CRISPR-Cas9 technology. We found that JADE1 null resulted in decreased survival rate, reduced body weight and brain weight in mice. However, histological analysis revealed a normal brain development. Furthermore, Jade1 null neural progenitor cells proliferated normally in vivo and in vitro. RNA-seq analysis further showed that JADE1 loss did not affect the cerebral cortex gene expression. Our findings indicate that JADE1 is dispensable for developing the cerebral cortex in mice.


Assuntos
Encéfalo , Proteínas de Homeodomínio , Animais , Camundongos , beta Catenina/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Via de Sinalização Wnt/fisiologia
14.
J Biomol Struct Dyn ; 42(2): 559-570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37011015

RESUMO

The wound-healing process is accelerated by inhibiting proteins that decelerate the wound-healing pathway. One of the active proteins involved in enhancing healing at the nuclear level and in gene expression is catenin. Inhibition of Glycogen Synthase Kinase 3ß (GSK3 ß) phosphorylates and degrades catenin via the downstream Wnt signalling pathway, thereby stabilizing catenin. A medicated wound dressing transdermal patch designed with fusion of bio wastes, viz. physiologically clotted fibrin, fish scale collagen, and the ethanolic extract of Mangifera indica (L.) and spider web, was analysed against GSK3ß to enhance healing. In our earlier studies, the compounds present in the transdermal patch were identified using GC-MS analysis; 12 compounds exhibiting the wound healing mechanism were analyzed using PASS software and filtered out. From these 12 compounds, 6 compounds that possessed drug-likeness were screened by SwissADME and vNN-ADMET to dock against GSK3ß in the present work. The PyRx results confirmed the binding of the six ligands to the active site of the target protein. Though the remaining filtered ligands also exhibited inhibitory activity, Molecular dynamics simulation studies were carried out with 100 ns on a complex of 10,12 Tricosadiyonic acid, Nopyl acetate and 2 Methyl 4 Heptanol as they showed binding affinity of -6.2Kcal/mol, -5.7Kcal/mol and -5.1Kcal/mol respectively. The stability of the complex was validated using MD simulation parameters RMSD, RMSF, Rg, and Number of Hydrogen bonds. These results implied that the transdermal patch would be efficient in accelerating the wound healing process through the inactivation of GSK3ß.Communicated by Ramaswamy H. Sarma.


Assuntos
Quinase 3 da Glicogênio Sintase , Extratos Vegetais , Animais , Extratos Vegetais/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Adesivo Transdérmico , beta Catenina/metabolismo , Cicatrização , Via de Sinalização Wnt/fisiologia , Simulação de Acoplamento Molecular
15.
Stem Cells Dev ; 33(1-2): 11-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897075

RESUMO

The homeostasis of the intestinal epithelium heavily relies on the self-renewal and differentiation of intestinal stem cells (ISCs). Although the orchestration of these processes by signaling pathways such as the Wnt, BMP, Notch, and MAPK signals has been extensively studied, the dynamics of their regulation remains unclear. Our study explores how the Wnt signaling pathway temporally regulates the differentiation of ISCs into various cell types in an intestinal organoid system. We report that the duration of Wnt exposure following Notch pathway inactivation significantly influences the differentiation direction of intestinal epithelial cells toward multiple secretory cell types, including goblet cells, enteroendocrine cells (EECs), and Paneth cells. This temporal regulation of Wnt signaling adds another layer of complexity to the combination of niche signals that govern cell fate. By manipulating this temporal signal, we have developed optimized protocols for the efficient in vitro differentiation of ISCs into EECs and goblet cells. These findings provide critical insights into the dynamic regulation of ISC differentiation and offer a robust platform for future investigations into intestinal biology and potential therapeutic applications.


Assuntos
Mucosa Intestinal , Intestinos , Diferenciação Celular/fisiologia , Mucosa Intestinal/metabolismo , Células-Tronco , Via de Sinalização Wnt/fisiologia , Organoides
16.
Mol Neurobiol ; 61(1): 308-325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37607993

RESUMO

Microglia are immunocompetent cells in the central nervous system. Following cerebral ischemia, microglia will be rapidly activated and undergo proliferation, morphological transformation, and changes in gene expression and function. At present, the regulatory mechanisms of microglial activation following ischemia remain largely unclear. In this study, we took advantage of CX3CR1GFP/+ fluorescent mice and a global cerebral ischemia-reperfusion model to investigate the mechanisms of microglial activation following different degrees of global ischemia. Our results showed that the proliferation of microglia was gated by the degree of ischemia. Marked microglial de-ramification and proliferation were observed after 60 min of ischemia but not in transient ischemia (20 min). Immunohistology, qRT-PCR, and Western blotting analysis showed that microglial activation was accompanied with a reduction in Wnt/ß-catenin signaling after cerebral ischemia. Downregulation of Wnt/ß-catenin signaling using Wnt antagonist XAV939 during 20 min ischemia promoted microglial de-ramification and proliferation. In contrast, enhancing Wnt/ß-catenin signaling using Wnt agonist LiCl during 60 min ischemia-reduced microglial de-ramification and proliferation. Importantly, we found that Wnt agonist inhibited inflammation in the ischemic brain and was conducive to animal behavioral recovery. Collectively, these data demonstrated that Wnt/ß-catenin signaling played a key role in microglial activation following cerebral ischemia, and regulating microglial activation may be a potential therapeutic strategy for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , Microglia , Camundongos , Animais , Microglia/metabolismo , beta Catenina/metabolismo , Isquemia Encefálica/patologia , Via de Sinalização Wnt/fisiologia , Infarto Cerebral/patologia
17.
Mol Neurobiol ; 61(3): 1543-1561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37728849

RESUMO

Enteric glial cells (EGCs) are the major component of the enteric nervous system and affect the pathophysiological process of intestinal motility dysfunction. MicroRNAs (miRNAs) play an important role in regulating gastrointestinal homeostasis. However, the mechanism of miRNA-mediated regulation of EGCs in intestinal dysmotility remains unclear. In this study, we investigated the effect of EGC apoptosis on intestinal dysmotility, and the effect of miR-26b-3p on EGC proliferation and apoptosis in vivo and in vitro. A loperamide hydrochloride (Lop)-induced constipated mouse model and an in vitro culture system of rat EGCs were established. The transcriptome was used to predict the differentially expressed gene miR-26b-3p and the target gene Frizzled 10 (FZD10), and their targeting binding relationship was verified by luciferase. EGCs were transfected with miR-26b-3p mimic or antagomir, and the FZD10 expression was down-regulated by siRNA. Immunofluorescence and flow cytometry were used to detect EGC apoptosis. MiR-26b-3p and FZD10 expressions were examined using quantitative real-time PCR (qRT-PCR). The CCK-8 assay was used to detect EGC proliferation. The protein levels were detected by Western blotting and enzyme-linked immunosorbent assay (ELISA). The results showed that miR-26b-3p was up-regulated in the Lop group, whereas FZD10 was down-regulated, and EGC apoptosis was increased in the colon of intestinal dysmotility mice. FZD10 down-regulation and miR-26b-3p mimic significantly increased glycogen synthase kinase-3ß phosphorylation (p-GSK3ß) levels, decreased ß-catenin expression, and promoted EGC apoptosis. MiR-26b-3p antagomir alleviated intestinal dysmotility, promoted EGC increased activity of EGCs, and reduced EGC apoptosis in vivo. In conclusion, this study indicated that miR-26b-3p promotes intestinal motility disorders by targeting FZD10 to block GSK3ß/ß-catenin signaling and induces apoptosis in EGCs. Our results provide a new research target for the treatment and intervention of intestinal dysmotility.


Assuntos
MicroRNAs , beta Catenina , Animais , Camundongos , Ratos , Antagomirs , Apoptose , beta Catenina/metabolismo , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/metabolismo , Neuroglia/metabolismo , Via de Sinalização Wnt/fisiologia
18.
Hepatology ; 79(3): 606-623, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733267

RESUMO

BACKGROUND AND AIMS: Aerobic glycolysis reprogramming occurs during HSC activation, but how it is initiated and sustained remains unknown. We investigated the mechanisms by which canonical Wnt signaling regulated HSC glycolysis and the therapeutic implication for liver fibrosis. APPROACH AND RESULTS: Glycolysis was examined in HSC-LX2 cells upon manipulation of Wnt/ß-catenin signaling. Nuclear translocation of lactate dehydrogenase A (LDH-A) and its interaction with hypoxia-inducible factor-1α (HIF-1α) were investigated using molecular simulation and site-directed mutation assays. The pharmacological relevance of molecular discoveries was intensified in primary cultures, rodent models, and human samples. HSC glycolysis was enhanced by Wnt3a but reduced by ß-catenin inhibitor or small interfering RNA (siRNA). Wnt3a-induced rapid transactivation and high expression of LDH-A dependent on TCF4. Wnt/ß-catenin signaling also stimulated LDH-A nuclear translocation through importin ß2 interplay with a noncanonical nuclear location signal of LDH-A. Mechanically, LDH-A bound to HIF-1α and enhanced its stability by obstructing hydroxylation-mediated proteasome degradation, leading to increased transactivation of glycolytic genes. The Gly28 residue of LDH-A was identified to be responsible for the formation of the LDH-A/HIF-1α transcription complex and stabilization of HIF-1α. Furthermore, LDH-A-mediated glycolysis was required for HSC activation in the presence of Wnt3a. Results in vivo showed that HSC activation and liver fibrosis were alleviated by HSC-specific knockdown of LDH-A in mice. ß-catenin inhibitor XAV-939 mitigated HSC activation and liver fibrosis, which were abrogated by HSC-specific LDH-A overexpression in mice with fibrosis. CONCLUSIONS: Inhibition of HSC glycolysis by targeting Wnt/ß-catenin signaling and LDH-A had therapeutic promise for liver fibrosis.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Cirrose Hepática , Via de Sinalização Wnt , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Via de Sinalização Wnt/fisiologia , Células Estreladas do Fígado/metabolismo
19.
Chem Biol Drug Des ; 103(1): e14358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37749299

RESUMO

Parkinson's disease (PD) is the commonest neurodegenerative disorder. It reduces motor and cognitive function in patients. Vinpocetine (Vinp) has the effects of anti-inflammatory and antioxidant, and could improve cognitive function in patients. This study was aimed to investigating the therapeutic effects of Vinp on dyskinesia in a 6-Hydroxydopamine hydrobromide (6-OHDA)-induced PD rat model. We constructed a PD rat model by injecting 6-OHDA, and intervened with Vinp for 7 days. The motor function of the rats was evaluated by an open-field test and rotation test. Besides, H&E staining was applied to observe the changes of dopaminergic neurons in the striatum. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in the rat striatum were detected. We assessed the impact of Vinp on α-synuclein (α-Syn) and Wnt/ß-catenin signaling pathway-related molecules by western blot and qRT-PCR. Rats in the PD group showed reduced horizontal movement frequency and number of squares crossed, increased contact time and rotation frequency, and reduced number of dopaminergic neurons accompanied by severe morphological damage. Vinp treatment increased the horizontal movement frequency and number of squares crossed, reduced the contact time, and rotation frequency in PD rats. Also, Vinp downregulated α-Syn protein expression and MDA level, while upregulated SOD activity in the striatum of PD rats. Furthermore, Vinp treatment activated the Wnt/ß-catenin signaling pathway in the striatum of PD rats. In conclusion, Vinp improved the dyskinesia in 6-OHDA-induced PD rats by alleviating oxidative stress, and these effects may be associated with activating the Wnt/ß-catenin signaling pathway.


Assuntos
Discinesias , Doença de Parkinson , Alcaloides de Vinca , Humanos , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Via de Sinalização Wnt/fisiologia , Oxidopamina/farmacologia , Oxidopamina/uso terapêutico , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Modelos Animais de Doenças
20.
Am J Pathol ; 194(1): 101-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37827215

RESUMO

The Wnt/ß-catenin pathway represents a promising therapeutic target for mitigating kidney fibrosis. Corin possesses the homologous ligand binding site [Frizzled-cysteine-rich domain (Fz-CRD)] similar to Frizzled proteins, which act as receptors for Wnt. The Fz-CRD has been found in eight different proteins, all of which, except for corin, are known to bind Wnt and regulate its signal transmission. We hypothesized that corin may inhibit the Wnt/ß-catenin signaling pathway and thereby reduce fibrogenesis. Reduced expression of corin along with the increased activity of Wnt/ß-catenin signaling was found in unilateral ureteral obstruction (UUO) and ureteral ischemia/reperfusion injury (UIRI) models. In vitro, corin bound to the Wnt1 through its Fz-CRDs and inhibit the Wnt1 function responsible for activating ß-catenin. Transforming growth factor-ß1 inhibited corin expression, accompanied by activation of ß-catenin; conversely, overexpression of corin attenuated the fibrotic effects of transforming growth factor-ß1. In vivo, adenovirus-mediated overexpression of corin attenuated the progression of fibrosis, which was potentially associated with the inhibition of Wnt/ß-catenin signaling and the down-regulation of its target genes after UUO and UIRI. These results suggest that corin acts as an antagonist that protects the kidney from pathogenic Wnt/ß-catenin signaling and from fibrosis following UUO and UIRI.


Assuntos
Nefropatias , Via de Sinalização Wnt , Camundongos , Animais , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Nefropatias/genética , Nefropatias/prevenção & controle , Nefropatias/metabolismo , Rim/patologia , Fibrose , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...